Avian influenza: A new threat to wild bird conservation?

Andreia Garcês, Isabel Pires

Abstract


Avian influenza, also known as bird flu, significantly threatens wild bird populations and global biodiversity. As wild birds are natural reservoirs for various strains of the influenza virus, they have a crucial role in the epidemiology of the disease, which has profound implications for both wildlife conservation and public health. The emergence and dispersion of highly pathogenic avian influenza strains, particularly H5N1, have resulted in large-scale mortality events in wild bird populations, disrupting ecosystems and threatening endangered species. The conservation of wild birds in the context of avian flu involves several critical actions, including surveillance, rapid response to outbreaks, habitat management, and minimizing human-wildlife interactions that facilitate virus transmission. Studying avian influenza’s impact on wild bird populations is crucial due to its dual importance in wildlife conservation and public health. Wild birds, as natural reservoirs of the virus, play a central role in its spread, with highly pathogenic strains like H5N1 causing devastating mortality events that disrupt ecosystems and endanger species. Effective management, including monitoring, rapid outbreak response, and habitat protection, is essential to mitigate these effects. Collaboration among experts is vital to protect biodiversity, sustain ecological balance, and reduce risks to human health, ensuring the long-term survival of wild bird populations.


Keywords


birds; avian influenza; pathology; wildlife

Full Text:

PDF

References


[1]Spackman E. Avian Influenza Virus. Humana Press; 2008.

[2]Alexander DJ. A Review of Avian Influenza in Different Bird Species. Vet. Microbiol. 2000; 74: 3-13. doi:10.1016/S0378-1135(00)00160-7

[3]Alexander DJ. An overview of the epidemiology of avian influenza. Vaccine. 2007; 25(30): 5637-5644. doi: 10.1016/j.vaccine.2006.10.051

[4]Causey D, Edwards SV. Ecology of Avian Influenza Virus in Birds. The Journal of Infectious Diseases. 2008; 197(s1): S29-S33. doi: 10.1086/524991

[5]Gamarra-Toledo V, Plaza PI, Angulo F, et al. Highly Pathogenic Avian Influenza (HPAI) strongly impacts wild birds in Peru. Biological Conservation. 2023; 286: 110272. doi: 10.1016/j.biocon.2023.110272

[6]Dey P, Ahuja A, Panwar J, et al. Immune Control of Avian Influenza Virus Infection and Its Vaccine Development. Vaccines. 2023; 11(3): 593. doi: 10.3390/vaccines11030593

[7]Youk S, Torchetti MK, Lantz K, et al. H5N1 highly pathogenic avian influenza clade 2.3.4.4b in wild and domestic birds: Introductions into the United States and reassortments, December 2021–April 2022. Virology. 2023; 587: 109860. doi: 10.1016/j.virol.2023.109860

[8]Abd El-Hack ME, El-Saadony MohamedT, Alqhtani AH, et al. The relationship among avian influenza, gut microbiota and chicken immunity: an updated overview. Poultry Science. 2022; 101(9): 102021. doi: 10.1016/j.psj.2022.102021

[9]Blagodatski A, Trutneva K, Glazova O, et al. Avian Influenza in Wild Birds and Poultry: Dissemination Pathways, Monitoring Methods, and Virus Ecology. Pathogens. 2021; 10(5): 630. doi: 10.3390/pathogens10050630

[10]Shakthi, K. Avian Influenza Virus. Available online: https://vocal.media/humans/avian-influenza-virus (accessed on 25 September 2024).

[11]USDA HPAI Detections in Wild Birds. Available online: https://www.aphis.usda.gov/livestock-poultry-disease/avian/avian-influenza/hpai-detections/wild-birds (accessed on 15 September 2024).

[12]Ariyama N, Pardo-Roa C, Muñoz G, et al. Highly Pathogenic Avian Influenza A(H5N1) Clade 2.3.4.4b Virus in Wild Birds, Chile. Emerging Infectious Diseases. 2023; 29(9): 1842-1845. doi: 10.3201/eid2909.230067

[13]Bhatiasevi, A. Wild Birds and Avian Influenza. In Wild Birds and Avian Influenza: an introduction to applied field research and disease sampling techniques. Food & Agriculture Orgation. 2007; 13-32.

[14]Krammer F, Schultz-Cherry S. We need to keep an eye on avian influenza. Nature Reviews Immunology. 2023; 23(5): 267-268. doi: 10.1038/s41577-023-00868-8

[15]Perkins LEL, Swayne DE. Comparative Susceptibility of Selected Avian and Mammalian Species to a Hong Kong–Origin H5N1 High-Pathogenicity Avian Influenza Virus. Avian Diseases. 2003; 47(s3): 956-967. doi: 10.1637/0005-2086-47.s3.956

[16]European Food Safety Authority Global Avian Influenza Viruses with Zoonotic Potential Situation Update. Available online: https://www.fao.org/animal-health/situation-updates/global-aiv-with-zoonotic-potential/en (accessed on 25 September 2024).

[17]RIVM Bird Flu (Avian Influenza). Available online: https://www.rivm.nl/en/bird-flu (accessed on 15 September 2024).

[18]Torrontegi O, Alvarez V, Acevedo P, et al. Long-term avian influenza virus epidemiology in a small Spanish wetland ecosystem is driven by the breeding Anseriformes community. Veterinary Research. 2019; 50(1). doi: 10.1186/s13567-019-0623-5

[19]Curran JM, Robertson ID, Ellis TM, et al. Evaluation of Avian Influenza Serologic and Virologic Diagnostic Methods in Wild Anseriformes and Charadriiformes. Avian Diseases. 2014; 58(1): 53-59. doi: 10.1637/10531-031513-reg.1

[20]Löndt BZ, Nunez A, Banks J, et al. Pathogenesis of highly pathogenic avian influenza A/turkey/Turkey/1/2005 H5N1 in Pekin ducks (Anas platyrhynchos) infected experimentally. Avian Pathology. 2008; 37(6): 619-627. doi: 10.1080/03079450802499126

[21]Teifke JP, Klopfleisch R, Globig A, et al. Pathology of Natural Infections by H5N1 Highly Pathogenic Avian Influenza Virus in Mute (Cygnus olor) and Whooper (Cygnus cygnus) Swans. Veterinary Pathology. 2007; 44(2): 137-143. doi: 10.1354/vp.44-2-137

[22]Hanson BA, Luttrell MP, Goekjian VH, et al. Is the occurrence of avian influenza virus in charadriiformes species and location dependent? Journal of Wildlife Diseases. 2008; 44(2): 351-361. doi: 10.7589/0090-3558-44.2.351

[23]Van Borm S, Rosseel T, Vangeluwe D, et al. Phylogeographic analysis of avian influenza viruses isolated from Charadriiformes in Belgium confirms intercontinental reassortment in gulls. Archives of Virology. 2012; 157(8): 1509-1522. doi: 10.1007/s00705-012-1323-x

[24]Ushine N, Ozawa M, Nakayama SMM, et al. Evaluation of the Effect of Pb Pollution on Avian Influenza Virus-Specific Antibody Production in Black-Headed Gulls (Chroicocephalus ridibundus). Animals. 2023; 13(14): 2338. doi: 10.3390/ani13142338

[25]Poulson R, Carter D, Beville S, et al. Influenza A Viruses in Ruddy Turnstones (Arenaria interpres); Connecting Wintering and Migratory Sites with an Ecological Hotspot at Delaware Bay. Viruses. 2020; 12(11): 1205. doi: 10.3390/v12111205

[26]Wille M. Ecology and Evolution of Avian Influenza A Viruses in Wild Birds. Genetics and Evolution of Infectious Diseases. 2024; 863-898. doi: 10.1016/b978-0-443-28818-0.00005-7

[27]Manvell RJ, McKinney P, Wernery U, et al. Isolation of a highly pathogenic influenza A virus of subtype H7N3 from a peregrine falcon (Falco peregrinus). Avian Pathology. 2000; 29(6): 635-637. doi: 10.1080/03079450020016896

[28]Goyal SM, Jindal N, Chander Y, et al. Isolation of mixed subtypes of influenza A virus from a bald eagle (Haliaeetus leucocephalus). Virology Journal. 2010; 7(1). doi: 10.1186/1743-422x-7-174

[29]Waller SJ, Wierenga JR, Heremia L, et al. Avian influenza virus surveillance across New Zealand and its subantarctic islands detects H1N9 in migratory shorebirds, but not 2.3.4.4b HPAI H5N1. bioRxiv. 2024. doi: 10.1101/2024.09.29.615640

[30]Furness RW, Gear SC, Camphuysen KCJ, et al. Environmental Samples Test Negative for Avian Influenza Virus H5N1 Four Months after Mass Mortality at A Seabird Colony. Pathogens. 2023; 12(4): 584. doi: 10.3390/pathogens12040584

[31]Banyard AC, Bennison A, Byrne AMP, et al. Detection and spread of high pathogenicity avian influenza virus H5N1 in the Antarctic Region. Nature Communications. 2024; 15(1). doi: 10.1038/s41467-024-51490-8

[32]Sharshov KA, Yurlov AK, Li X, et al. Avian influenza virus ecology in wild birds of Western Siberia. Avian Research. 2017; 8(1). doi: 10.1186/s40657-017-0070-9

[33]Djurdjević B, Petrović T, Gajdov V, et al. First Report of Highly Pathogenic Avian Influenza H5N1 in Common Cranes (Grus Grus) in Serbia Natural Infection of Common Cranes (Grus Grus) with Highly Pathogenic Avian Influenza H5N1 in Serbia. Front. Vet. Sci. 2024; 11. doi:10.3389/fvets.2024.1462546

[34]Gaide N, Lucas MN, Delpont M, et al. Pathobiology of highly pathogenic H5 avian influenza viruses in naturally infected Galliformes and Anseriformes in France during winter 2015–2016. Veterinary Research. 2022; 53(1). doi: 10.1186/s13567-022-01028-x

[35]Malmberg JL, Miller M, Jennings-Gaines J, et al. Mortality in Wild Turkeys (Meleagris gallopavo) Associated with Natural Infection with H5N1 Highly Pathogenic Avian Influenza Virus (HPAIV) Subclade 2.3.4.4. Journal of Wildlife Diseases. 2023; 59(4). doi: 10.7589/jwd-d-22-00161

[36]Roberts LC, Abernethy D, Roberts DG, et al. Vaccination of African penguins (Spheniscus demersus) against high‐pathogenicity avian influenza. Veterinary Record. 2023; 194(2). doi: 10.1002/vetr.3616

[37]Molini U, Aikukutu G, Roux JP, et al. Avian Influenza H5N8 Outbreak in African Penguins (Spheniscus demersus), Namibia, 2019. Journal of Wildlife Diseases. 2020; 56(1): 214. doi: 10.7589/2019-03-067

[38]Muñoz G, Ulloa M, Alegría R, et al. Stranding and mass mortality in humboldt penguins (Spheniscus humboldti), associated to HPAIV H5N1 outbreak in Chile. Preventive Veterinary Medicine. 2024; 227: 106206. doi: 10.1016/j.prevetmed.2024.106206

[39]Ringenberg JM, Weir K, Humberg L, et al. Prevalence of Avian Influenza Virus in Atypical Wild Birds Host Groups during an Outbreak of Highly Pathogenic Strain EA/AM H5N1. Chen N hua, ed. Transboundary and Emerging Diseases. 2024; 2024(1). doi: 10.1155/2024/4009552

[40]Sacristán C, Ewbank AC, Ibáñez Porras P, et al. Novel Epidemiologic Features of High Pathogenicity Avian Influenza Virus A H5N1 2.3.3.4b Panzootic: A Review. Transboundary and Emerging Diseases. 2024; 2024(1). doi: 10.1155/2024/5322378

[41]Ke Y, Han, X, Lin S, et al. Emergence of a triple reassortment avian influenza virus (A/H5N6) from wild birds. Journal of Infection. 2024; 88(3): 106106. doi: 10.1016/j.jinf.2024.01.005

[42]Cho AY, Si YJ, Kim DJ, et al. Novel Avian Influenza A(H5N6) in Wild Birds, South Korea, 2023. Emerging Infectious Diseases. 2024; 30(6). doi: 10.3201/eid3006.240192

[43]Mine J, Takadate Y, Kumagai A, et al. Genetics of H5N1 and H5N8 High-Pathogenicity Avian Influenza Viruses Isolated in Japan in Winter 2021–2022. Viruses. 2024; 16(3): 358. doi: 10.3390/v16030358

[44]Dupas MC, Vincenti-Gonzalez MF, Dhingra M, et al. Global risk mapping of highly pathogenic avian influenza H5N1 and H5Nx in the light of epidemic episodes occurring from 2020 onward. bioRxiv. 2024. doi: 10.1101/2024.11.15.623755

[45]Focosi D, Maggi F. Avian Influenza Virus A(H5Nx) and Prepandemic Candidate Vaccines: State of the Art. International Journal of Molecular Sciences. 2024; 25(15): 8550. doi: 10.3390/ijms25158550

[46]Cormier TL, Barychka T, Beaumont M, et al. Seabird and sea duck mortalities were lower during the second breeding season in eastern Canada following the introduction of highly pathogenic avian influenza A H5Nx viruses. Bird Study. 2024; 1-13. doi: 10.1080/00063657.2024.2415161

[47]Hou Y, Deng G, Cui P, et al. Evolution of H7N9 highly pathogenic avian influenza virus in the context of vaccination. Emerging Microbes & Infections. 2024; 13(1). doi: 10.1080/22221751.2024.2343912

[48]Ichikawa T, Hiono T, Okamatsu M, et al. Hemagglutinin and neuraminidase of an H7N7 non-pathogenic avian influenza virus coevolved during the acquisition of intranasal pathogenicity in chickens. 2024. doi: 10.21203/rs.3.rs-4161114/v1

[49]Yang Q, Ji J, Yang J, et al. Diversity of genotypes and pathogenicity of H9N2 avian influenza virus derived from wild bird and domestic poultry. Frontiers in Microbiology. 2024; 15. doi: 10.3389/fmicb.2024.1402235

[50]Dziadek K, Świętoń E, Kozak E, et al. Phylogenetic and Molecular Characteristics of Wild Bird-Origin Avian Influenza Viruses Circulating in Poland in 2018−2022: Reassortment, Multiple Introductions, and Wild Bird–Poultry Epidemiological Links. Transboundary and Emerging Diseases. 2024; 2024: 1-15. doi: 10.1155/2024/6661672

[51]Kutkat O, Gomaa M, Aboulhoda BE, et al. Genetic and virological characteristics of a reassortant avian influenza A H6N1 virus isolated from wild birds at a live-bird market in Egypt. Archives of Virology. 2024; 169(5). doi: 10.1007/s00705-024-06022-6

[52]Boonyapisitsopa S, Chaiyawong S, Charoenkul K, et al. Genetic characterization of low-pathogenic avian influenza subtypes H10N6 and H10N7 from free-grazing ducks in Thailand. Veterinary World. 2024; 2166-2176. doi: 10.14202/vetworld.2024.2166-2176

[53]Alkie TN, Byrne AMP, Jones MEB, et al. Recurring Trans-Atlantic Incursion of Clade 2.3.4.4b H5N1 Viruses by Long Distance Migratory Birds from Northern Europe to Canada in 2022/2023. Viruses. 2023; 15(9): 1836. doi: 10.3390/v15091836

[54]Zhang G, Li B, Raghwani J, et al. Bidirectional Movement of Emerging H5N8 Avian Influenza Viruses Between Europe and Asia via Migratory Birds Since Early 2020. Molecular Biology and Evolution. 2023; 40(2). doi: 10.1093/molbev/msad019

[55]Bolshakov CV, Bulyuk VN, Sinelschikova AY, Vorotkov MV. Influence of the Vertical Light Beam on Numbers and Flight Trajectories of Night-Migrating Songbirds. Avian Ecol Behav. 2013; 15.

[56]Bonilla-Aldana DK, Calle-Hernández DM, Ulloque-Badaracco JR, et al. Highly pathogenic avian influenza A(H5N1) in animals: A systematic review and meta-analysis. New Microbes and New Infections. 2024; 60-61: 101439. doi: 10.1016/j.nmni.2024.101439

[57]Swayne DE, Suarez DL. Highly pathogenic avian influenza. Revue Scientifique et Technique de l’OIE. 2000; 19(2): 463-482. doi: 10.20506/rst.19.2.1230

[58]Lean FZX, Núñez A, Banyard AC, et al. Gross pathology associated with highly pathogenic avian influenza H5N8 and H5N1 in naturally infected birds in the UK (2020–2021). Veterinary Record. 2021; 190(1). doi: 10.1002/vetr.731

[59]Puryear WB, Runstadler JA. High-pathogenicity avian influenza in wildlife: a changing disease dynamic that is expanding in wild birds and having an increasing impact on a growing number of mammals. Journal of the American Veterinary Medical Association. 2024; 262(5): 601-609. doi: 10.2460/javma.24.01.0053

[60]Cardona CJ, Xing Z, Sandrock CE, et al. Avian influenza in birds and mammals. Comparative Immunology, Microbiology and Infectious Diseases. 2009; 32(4): 255-273. doi: 10.1016/j.cimid.2008.01.001

[61]Krauss S, Obert CA, Franks J, et al. Influenza in Migratory Birds and Evidence of Limited Intercontinental Virus Exchange. PLoS Pathogens. 2007; 3(11): e167. doi: 10.1371/journal.ppat.0030167

[62]Soda K, Tomioka Y, Usui T, et al. Pathogenicity of H5 highly pathogenic avian influenza virus in rooks (Corvus frugilegus). Avian Pathology. 2020; 49(3): 261-267. doi: 10.1080/03079457.2020.1724876

[63]Kozlov M. US will vaccinate birds against avian flu for first time—what researchers think. Nature. 2023; 618(7964): 220-221. doi: 10.1038/d41586-023-01760-0

[64]Giacinti JA, Signore AV, Jones MEB, et al. Avian influenza viruses in wild birds in Canada following incursions of highly pathogenic H5N1 virus from Eurasia in 2021–2022. mBio. 2024; 15(8). doi: 10.1128/mbio.03203-23

[65]Riaz J, Orben RA, Gamble A, et al. Coastal connectivity of marine predators over the Patagonian Shelf during the highly pathogenic avian influenza outbreak. Ecography. 2024; 2024(11). doi: 10.1111/ecog.07415

[66]McLeod A. Economics of Avian Influenza Management and Control in a World with Competing Agendas. Avian Diseases. 2010; 54(s1): 374-379. doi: 10.1637/8904-043009-review.1




DOI: https://doi.org/10.18686/ppas.v6i1.2262

Refbacks

  • There are currently no refbacks.