Avian influenza: A new threat to wild bird conservation?
Abstract
Avian influenza, also known as bird flu, significantly threatens wild bird populations and global biodiversity. As wild birds are natural reservoirs for various strains of the influenza virus, they have a crucial role in the epidemiology of the disease, which has profound implications for both wildlife conservation and public health. The emergence and dispersion of highly pathogenic avian influenza strains, particularly H5N1, have resulted in large-scale mortality events in wild bird populations, disrupting ecosystems and threatening endangered species. The conservation of wild birds in the context of avian flu involves several critical actions, including surveillance, rapid response to outbreaks, habitat management, and minimizing human-wildlife interactions that facilitate virus transmission. Studying avian influenza’s impact on wild bird populations is crucial due to its dual importance in wildlife conservation and public health. Wild birds, as natural reservoirs of the virus, play a central role in its spread, with highly pathogenic strains like H5N1 causing devastating mortality events that disrupt ecosystems and endanger species. Effective management, including monitoring, rapid outbreak response, and habitat protection, is essential to mitigate these effects. Collaboration among experts is vital to protect biodiversity, sustain ecological balance, and reduce risks to human health, ensuring the long-term survival of wild bird populations.
Keywords
Full Text:
PDFReferences
Spackman E. Avian Influenza Virus. Humana Press; 2008.
Alexander DJ. A Review of Avian Influenza in Different Bird Species. Vet. Microbiol. 2000; 74: 3-13. doi:10.1016/S0378-1135(00)00160-7
Alexander DJ. An overview of the epidemiology of avian influenza. Vaccine. 2007; 25(30): 5637-5644. doi: 10.1016/j.vaccine.2006.10.051
Causey D, Edwards SV. Ecology of Avian Influenza Virus in Birds. The Journal of Infectious Diseases. 2008; 197(s1): S29-S33. doi: 10.1086/524991
Gamarra-Toledo V, Plaza PI, Angulo F, et al. Highly Pathogenic Avian Influenza (HPAI) strongly impacts wild birds in Peru. Biological Conservation. 2023; 286: 110272. doi: 10.1016/j.biocon.2023.110272
Dey P, Ahuja A, Panwar J, et al. Immune Control of Avian Influenza Virus Infection and Its Vaccine Development. Vaccines. 2023; 11(3): 593. doi: 10.3390/vaccines11030593
Youk S, Torchetti MK, Lantz K, et al. H5N1 highly pathogenic avian influenza clade 2.3.4.4b in wild and domestic birds: Introductions into the United States and reassortments, December 2021–April 2022. Virology. 2023; 587: 109860. doi: 10.1016/j.virol.2023.109860
Abd El-Hack ME, El-Saadony MohamedT, Alqhtani AH, et al. The relationship among avian influenza, gut microbiota and chicken immunity: an updated overview. Poultry Science. 2022; 101(9): 102021. doi: 10.1016/j.psj.2022.102021
Blagodatski A, Trutneva K, Glazova O, et al. Avian Influenza in Wild Birds and Poultry: Dissemination Pathways, Monitoring Methods, and Virus Ecology. Pathogens. 2021; 10(5): 630. doi: 10.3390/pathogens10050630
Shakthi, K. Avian Influenza Virus. Available online: https://vocal.media/humans/avian-influenza-virus (accessed on 25 September 2024).
USDA HPAI Detections in Wild Birds. Available online: https://www.aphis.usda.gov/livestock-poultry-disease/avian/avian-influenza/hpai-detections/wild-birds (accessed on 15 September 2024).
Ariyama N, Pardo-Roa C, Muñoz G, et al. Highly Pathogenic Avian Influenza A(H5N1) Clade 2.3.4.4b Virus in Wild Birds, Chile. Emerging Infectious Diseases. 2023; 29(9): 1842-1845. doi: 10.3201/eid2909.230067
Bhatiasevi, A. Wild Birds and Avian Influenza. In Wild Birds and Avian Influenza: an introduction to applied field research and disease sampling techniques. Food & Agriculture Orgation. 2007; 13-32.
Krammer F, Schultz-Cherry S. We need to keep an eye on avian influenza. Nature Reviews Immunology. 2023; 23(5): 267-268. doi: 10.1038/s41577-023-00868-8
Perkins LEL, Swayne DE. Comparative Susceptibility of Selected Avian and Mammalian Species to a Hong Kong–Origin H5N1 High-Pathogenicity Avian Influenza Virus. Avian Diseases. 2003; 47(s3): 956-967. doi: 10.1637/0005-2086-47.s3.956
European Food Safety Authority Global Avian Influenza Viruses with Zoonotic Potential Situation Update. Available online: https://www.fao.org/animal-health/situation-updates/global-aiv-with-zoonotic-potential/en (accessed on 25 September 2024).
RIVM Bird Flu (Avian Influenza). Available online: https://www.rivm.nl/en/bird-flu (accessed on 15 September 2024).
Torrontegi O, Alvarez V, Acevedo P, et al. Long-term avian influenza virus epidemiology in a small Spanish wetland ecosystem is driven by the breeding Anseriformes community. Veterinary Research. 2019; 50(1). doi: 10.1186/s13567-019-0623-5
Curran JM, Robertson ID, Ellis TM, et al. Evaluation of Avian Influenza Serologic and Virologic Diagnostic Methods in Wild Anseriformes and Charadriiformes. Avian Diseases. 2014; 58(1): 53-59. doi: 10.1637/10531-031513-reg.1
Löndt BZ, Nunez A, Banks J, et al. Pathogenesis of highly pathogenic avian influenza A/turkey/Turkey/1/2005 H5N1 in Pekin ducks (Anas platyrhynchos) infected experimentally. Avian Pathology. 2008; 37(6): 619-627. doi: 10.1080/03079450802499126
Teifke JP, Klopfleisch R, Globig A, et al. Pathology of Natural Infections by H5N1 Highly Pathogenic Avian Influenza Virus in Mute (Cygnus olor) and Whooper (Cygnus cygnus) Swans. Veterinary Pathology. 2007; 44(2): 137-143. doi: 10.1354/vp.44-2-137
Hanson BA, Luttrell MP, Goekjian VH, et al. Is the occurrence of avian influenza virus in charadriiformes species and location dependent? Journal of Wildlife Diseases. 2008; 44(2): 351-361. doi: 10.7589/0090-3558-44.2.351
Van Borm S, Rosseel T, Vangeluwe D, et al. Phylogeographic analysis of avian influenza viruses isolated from Charadriiformes in Belgium confirms intercontinental reassortment in gulls. Archives of Virology. 2012; 157(8): 1509-1522. doi: 10.1007/s00705-012-1323-x
Ushine N, Ozawa M, Nakayama SMM, et al. Evaluation of the Effect of Pb Pollution on Avian Influenza Virus-Specific Antibody Production in Black-Headed Gulls (Chroicocephalus ridibundus). Animals. 2023; 13(14): 2338. doi: 10.3390/ani13142338
Poulson R, Carter D, Beville S, et al. Influenza A Viruses in Ruddy Turnstones (Arenaria interpres); Connecting Wintering and Migratory Sites with an Ecological Hotspot at Delaware Bay. Viruses. 2020; 12(11): 1205. doi: 10.3390/v12111205
Wille M. Ecology and Evolution of Avian Influenza A Viruses in Wild Birds. Genetics and Evolution of Infectious Diseases. 2024; 863-898. doi: 10.1016/b978-0-443-28818-0.00005-7
Manvell RJ, McKinney P, Wernery U, et al. Isolation of a highly pathogenic influenza A virus of subtype H7N3 from a peregrine falcon (Falco peregrinus). Avian Pathology. 2000; 29(6): 635-637. doi: 10.1080/03079450020016896
Goyal SM, Jindal N, Chander Y, et al. Isolation of mixed subtypes of influenza A virus from a bald eagle (Haliaeetus leucocephalus). Virology Journal. 2010; 7(1). doi: 10.1186/1743-422x-7-174
Waller SJ, Wierenga JR, Heremia L, et al. Avian influenza virus surveillance across New Zealand and its subantarctic islands detects H1N9 in migratory shorebirds, but not 2.3.4.4b HPAI H5N1. bioRxiv. 2024. doi: 10.1101/2024.09.29.615640
Furness RW, Gear SC, Camphuysen KCJ, et al. Environmental Samples Test Negative for Avian Influenza Virus H5N1 Four Months after Mass Mortality at A Seabird Colony. Pathogens. 2023; 12(4): 584. doi: 10.3390/pathogens12040584
Banyard AC, Bennison A, Byrne AMP, et al. Detection and spread of high pathogenicity avian influenza virus H5N1 in the Antarctic Region. Nature Communications. 2024; 15(1). doi: 10.1038/s41467-024-51490-8
Sharshov KA, Yurlov AK, Li X, et al. Avian influenza virus ecology in wild birds of Western Siberia. Avian Research. 2017; 8(1). doi: 10.1186/s40657-017-0070-9
Djurdjević B, Petrović T, Gajdov V, et al. First Report of Highly Pathogenic Avian Influenza H5N1 in Common Cranes (Grus Grus) in Serbia Natural Infection of Common Cranes (Grus Grus) with Highly Pathogenic Avian Influenza H5N1 in Serbia. Front. Vet. Sci. 2024; 11. doi:10.3389/fvets.2024.1462546
Gaide N, Lucas MN, Delpont M, et al. Pathobiology of highly pathogenic H5 avian influenza viruses in naturally infected Galliformes and Anseriformes in France during winter 2015–2016. Veterinary Research. 2022; 53(1). doi: 10.1186/s13567-022-01028-x
Malmberg JL, Miller M, Jennings-Gaines J, et al. Mortality in Wild Turkeys (Meleagris gallopavo) Associated with Natural Infection with H5N1 Highly Pathogenic Avian Influenza Virus (HPAIV) Subclade 2.3.4.4. Journal of Wildlife Diseases. 2023; 59(4). doi: 10.7589/jwd-d-22-00161
Roberts LC, Abernethy D, Roberts DG, et al. Vaccination of African penguins (Spheniscus demersus) against high‐pathogenicity avian influenza. Veterinary Record. 2023; 194(2). doi: 10.1002/vetr.3616
Molini U, Aikukutu G, Roux JP, et al. Avian Influenza H5N8 Outbreak in African Penguins (Spheniscus demersus), Namibia, 2019. Journal of Wildlife Diseases. 2020; 56(1): 214. doi: 10.7589/2019-03-067
Muñoz G, Ulloa M, Alegría R, et al. Stranding and mass mortality in humboldt penguins (Spheniscus humboldti), associated to HPAIV H5N1 outbreak in Chile. Preventive Veterinary Medicine. 2024; 227: 106206. doi: 10.1016/j.prevetmed.2024.106206
Ringenberg JM, Weir K, Humberg L, et al. Prevalence of Avian Influenza Virus in Atypical Wild Birds Host Groups during an Outbreak of Highly Pathogenic Strain EA/AM H5N1. Chen N hua, ed. Transboundary and Emerging Diseases. 2024; 2024(1). doi: 10.1155/2024/4009552
Sacristán C, Ewbank AC, Ibáñez Porras P, et al. Novel Epidemiologic Features of High Pathogenicity Avian Influenza Virus A H5N1 2.3.3.4b Panzootic: A Review. Transboundary and Emerging Diseases. 2024; 2024(1). doi: 10.1155/2024/5322378
Ke Y, Han, X, Lin S, et al. Emergence of a triple reassortment avian influenza virus (A/H5N6) from wild birds. Journal of Infection. 2024; 88(3): 106106. doi: 10.1016/j.jinf.2024.01.005
Cho AY, Si YJ, Kim DJ, et al. Novel Avian Influenza A(H5N6) in Wild Birds, South Korea, 2023. Emerging Infectious Diseases. 2024; 30(6). doi: 10.3201/eid3006.240192
Mine J, Takadate Y, Kumagai A, et al. Genetics of H5N1 and H5N8 High-Pathogenicity Avian Influenza Viruses Isolated in Japan in Winter 2021–2022. Viruses. 2024; 16(3): 358. doi: 10.3390/v16030358
Dupas MC, Vincenti-Gonzalez MF, Dhingra M, et al. Global risk mapping of highly pathogenic avian influenza H5N1 and H5Nx in the light of epidemic episodes occurring from 2020 onward. bioRxiv. 2024. doi: 10.1101/2024.11.15.623755
Focosi D, Maggi F. Avian Influenza Virus A(H5Nx) and Prepandemic Candidate Vaccines: State of the Art. International Journal of Molecular Sciences. 2024; 25(15): 8550. doi: 10.3390/ijms25158550
Cormier TL, Barychka T, Beaumont M, et al. Seabird and sea duck mortalities were lower during the second breeding season in eastern Canada following the introduction of highly pathogenic avian influenza A H5Nx viruses. Bird Study. 2024; 1-13. doi: 10.1080/00063657.2024.2415161
Hou Y, Deng G, Cui P, et al. Evolution of H7N9 highly pathogenic avian influenza virus in the context of vaccination. Emerging Microbes & Infections. 2024; 13(1). doi: 10.1080/22221751.2024.2343912
Ichikawa T, Hiono T, Okamatsu M, et al. Hemagglutinin and neuraminidase of an H7N7 non-pathogenic avian influenza virus coevolved during the acquisition of intranasal pathogenicity in chickens. 2024. doi: 10.21203/rs.3.rs-4161114/v1
Yang Q, Ji J, Yang J, et al. Diversity of genotypes and pathogenicity of H9N2 avian influenza virus derived from wild bird and domestic poultry. Frontiers in Microbiology. 2024; 15. doi: 10.3389/fmicb.2024.1402235
Dziadek K, Świętoń E, Kozak E, et al. Phylogenetic and Molecular Characteristics of Wild Bird-Origin Avian Influenza Viruses Circulating in Poland in 2018−2022: Reassortment, Multiple Introductions, and Wild Bird–Poultry Epidemiological Links. Transboundary and Emerging Diseases. 2024; 2024: 1-15. doi: 10.1155/2024/6661672
Kutkat O, Gomaa M, Aboulhoda BE, et al. Genetic and virological characteristics of a reassortant avian influenza A H6N1 virus isolated from wild birds at a live-bird market in Egypt. Archives of Virology. 2024; 169(5). doi: 10.1007/s00705-024-06022-6
Boonyapisitsopa S, Chaiyawong S, Charoenkul K, et al. Genetic characterization of low-pathogenic avian influenza subtypes H10N6 and H10N7 from free-grazing ducks in Thailand. Veterinary World. 2024; 2166-2176. doi: 10.14202/vetworld.2024.2166-2176
Alkie TN, Byrne AMP, Jones MEB, et al. Recurring Trans-Atlantic Incursion of Clade 2.3.4.4b H5N1 Viruses by Long Distance Migratory Birds from Northern Europe to Canada in 2022/2023. Viruses. 2023; 15(9): 1836. doi: 10.3390/v15091836
Zhang G, Li B, Raghwani J, et al. Bidirectional Movement of Emerging H5N8 Avian Influenza Viruses Between Europe and Asia via Migratory Birds Since Early 2020. Molecular Biology and Evolution. 2023; 40(2). doi: 10.1093/molbev/msad019
Bolshakov CV, Bulyuk VN, Sinelschikova AY, Vorotkov MV. Influence of the Vertical Light Beam on Numbers and Flight Trajectories of Night-Migrating Songbirds. Avian Ecol Behav. 2013; 15.
Bonilla-Aldana DK, Calle-Hernández DM, Ulloque-Badaracco JR, et al. Highly pathogenic avian influenza A(H5N1) in animals: A systematic review and meta-analysis. New Microbes and New Infections. 2024; 60-61: 101439. doi: 10.1016/j.nmni.2024.101439
Swayne DE, Suarez DL. Highly pathogenic avian influenza. Revue Scientifique et Technique de l’OIE. 2000; 19(2): 463-482. doi: 10.20506/rst.19.2.1230
Lean FZX, Núñez A, Banyard AC, et al. Gross pathology associated with highly pathogenic avian influenza H5N8 and H5N1 in naturally infected birds in the UK (2020–2021). Veterinary Record. 2021; 190(1). doi: 10.1002/vetr.731
Puryear WB, Runstadler JA. High-pathogenicity avian influenza in wildlife: a changing disease dynamic that is expanding in wild birds and having an increasing impact on a growing number of mammals. Journal of the American Veterinary Medical Association. 2024; 262(5): 601-609. doi: 10.2460/javma.24.01.0053
Cardona CJ, Xing Z, Sandrock CE, et al. Avian influenza in birds and mammals. Comparative Immunology, Microbiology and Infectious Diseases. 2009; 32(4): 255-273. doi: 10.1016/j.cimid.2008.01.001
Krauss S, Obert CA, Franks J, et al. Influenza in Migratory Birds and Evidence of Limited Intercontinental Virus Exchange. PLoS Pathogens. 2007; 3(11): e167. doi: 10.1371/journal.ppat.0030167
Soda K, Tomioka Y, Usui T, et al. Pathogenicity of H5 highly pathogenic avian influenza virus in rooks (Corvus frugilegus). Avian Pathology. 2020; 49(3): 261-267. doi: 10.1080/03079457.2020.1724876
Kozlov M. US will vaccinate birds against avian flu for first time—what researchers think. Nature. 2023; 618(7964): 220-221. doi: 10.1038/d41586-023-01760-0
Giacinti JA, Signore AV, Jones MEB, et al. Avian influenza viruses in wild birds in Canada following incursions of highly pathogenic H5N1 virus from Eurasia in 2021–2022. mBio. 2024; 15(8). doi: 10.1128/mbio.03203-23
Riaz J, Orben RA, Gamble A, et al. Coastal connectivity of marine predators over the Patagonian Shelf during the highly pathogenic avian influenza outbreak. Ecography. 2024; 2024(11). doi: 10.1111/ecog.07415
McLeod A. Economics of Avian Influenza Management and Control in a World with Competing Agendas. Avian Diseases. 2010; 54(s1): 374-379. doi: 10.1637/8904-043009-review.1
DOI: https://doi.org/10.18686/ppas.v6i1.2262
Refbacks
- There are currently no refbacks.