Gaseous Exchanges and Formation of Aerenchyma in Eucalyptus Clones Submitted to Hypoxia and High Manganese Content
Abstract
In lowlands of Vale do Rio Doce regions it is observed the occurrence of Eucalyptus shoot blight from Vale do Rio Doce (ESBVRD). This anomaly has been observed in regions with a high incidence of rainfall and soils conditions that predispose flooding (hypoxia) and, consequently, Mn available excess. The objective of this work was to evaluate nutritional, physiological and morphological changes possibly involved in the differential tolerance of eucalyptus clones to ESBVRD, under hypoxia conditions and Mn excess. To this end, an experiment was carried out in nutrient solution, in a growth chamber. Two clones of eucalyptus, a sensitive (1213) and a tolerant (2719), were submitted to four O2 concentrations (1; 4; 6 and 8 mg L-1),at the presence of 30 mg L-1 of Mn, concentration considered excessive or toxic. The lengths of the root system and shoots were measured, as well as photosynthesis, stomatal conductance, transpiration and CO2 internal concentration. Also, roots samples were taken near the apex for anatomical analyzes. At the end of the experiment (21 days), the plants were harvested and separated into old and new leaves, stem and root. Afterwards, the levels of Mn in the tissues were determined. The hypoxia condition limited the total dry matter, similar to both clones, although the root growth was the most sensitive indicator of stress condition caused by hypoxia, with more marked effect in the sensitive clone. The tolerant clone replied more clearly to the increase of O2 availability (lower hypoxia), with the increased metabolism due to the greater stomatal conductance, photosynthetic rate, transpiration and CO2 internal concentration, comparing to the sensitive clone. Hypoxia condition caused the most intense formation of aerenchyma in the sensitive clone’s root system, even though the arenchyma formation was also observed in the tolerant clone. Mn excess did not imply in great responses.
Keywords
Full Text:
PDFReferences
Almeida, A.Q., Ribeiro, A., Leite, F.P., 2013. Relação entre a seca dos ponteiros do eucalipto e o clima no vale da bacia hidrográfica do rio doce. Eng. Ambiental. 10, 5-13.
Arruda, G.M., Calbo, M.E.R., 2004. Efeitos da inundação no crescimento, trocas gasosas e porosidade radicular da carnaúba (Copernicia prunifera (Mill.) H.E. Moore). Acta Bot Bras. 18, 219-24. doi:10.1590/S0102-33062004000200002
Bai, T., Li, C., Ma, F., Feng, F., Shu, H., 2010. Responses of growth and antioxidant system to root-zone hypoxia stress in two Malus species. Plant Soil. 327, 95-105. doi:10.1007/s11104-009-0034-x
Bailey-Serres, J., Voesenek, L.A.C.J., 2008. Flooding stress: aclimations and genetic diversity. Ann Rev Plant Biol. 59, 313-39. doi: 10.1146/annurev.arplant.59.032607.092752
Bradford, K.J., Hsiao, T.C., 1982. Stomatal behavior and water relations of waterlogged tomato Plants. Plant Physiol. 70, 1508-13.
Carvalho, L.S.O., Lira, J.M.S., Rodrigues, A.C., Lara, T.S., Pacheco, F.V., Alvarenga, A.A.D., 2016. Resistance mechanisms of Peltophorum dubium (Sprengel) taubert submitted to flood conditions. Floresta e Ambiente. 23(4), 582-588. doi: 10.1590/2179-8087.135015
Clark, R.B., 1975. Characterization of phosphatase of intact maize roots. J Agric Food Chem. 23, 458-60.
Colmer, T.D., 2003. Long-distance transport of gases in plants: a perspective on internal aeration and radial oxygen loss from roots. Plant Cell Environ. 26, 17-36. doi: 10.1046/j.1365-3040.2003.00846.x
Dantas, B.F., Aragão, C.A., Alves, J.D., 2001. Cálcio e o desenvolvimento de aerênquima e atividade de celulases em plântulas de milho submetidas à hipoxia. Sci Agric. 58, 251-7.
Feder, N., O’Brian, T.P., 1968. Plant microtechnique: some principles and new methods. Am J Bot. 55, 123-42.
George, E., Horst, W.J., Neumann, E., 2012. Adaptation of plants to adverse chemical soil conditions. In: Marschner, P. (Ed.), Marschner’s mineral nutrition of higher plants. 3rd.ed. Academic Press, New York, pp.409-72.
Greet, J., 2015. The marked flooding tolerance of seedlings of a threatened swamp gum: implications for the restoration of critical wetland forests. Aust. J Bot. 63(8), 669-678. doi: 10.1071/BT15128
Han, F., Shan, X., Zhang, S., Wen, B., Owens, G., 2006. Enhanced cadmium accumulation in maize roots - the impact of organic acids. Plant Soil. 289, 355-68. doi: 10.1007/s11104-006-9145-9
Johansen, D.A., 1940. Plant Microtechnique. McGraw Hill, New York.
Khabaz-Saberi, H., Setter, T., Waters, I., 2006. Waterlogging induces high to toxic concentrations of iron, aluminum, and manganese in wheat varieties on acidic soil. J Plant Nutr. 29, 899-911. doi: 10.1080/01904160600649161
Kozlowski, T.T., 1984. Responses of woody plants to flooding. In:
Kozlowski, T.T. (Ed.), Flooding and plant growth. Academic Press, London, pp. 129-63.
Kreuzwieser, J., Gessler, A., 2010. Global climate change and tree nutrition: influence of water availability. Tree Physiol. 30, 1221-34. doi:10.1093/treephys/tpq055
Leite, F.P., Novais, R.F., Silva, I.R., Barros, N.F., Neves, J.C.L., Medeiros, A.G.B., Ventrella, M.C., Villani, E.M.A., 2014. Excesso temporário de manganês em eucalipto e sua relação com a seca de ponteiro do eucalipto do Vale do Rio Doce. R Bras Ci Solo. 38, 193-204.
Lidon, F.C., Teixeira, M.G., 2000. Rice tolerance to excess Mn: implications in the chloroplast lamellae and synthesis of a novel Mn protein. Plant Physiol Biochem. 38, 969-78. doi: 10.1016/S0981-9428(00)01207-9
Loreti, E., van Veen, H., Perata, P., 2016. Plant responses to flooding stress. Curr. Opin. Plant. Biol. 33, 64-71. doi: 10.1016/j.pbi.2016.06.005
Luo, F.L., Huang, L., Lei, T., Xue, W., Li, H.L., Yu, F.H., Cornelissen, J.H., 2016. Responsiveness of performance and morphological traits to experimental submergence predicts field distribution pattern of wetland plants. J Veg. Sci. 27(2),340-351. doi: 10.1111/jvs.12352
Magalhães, P.C., Souza, T.C., Pereira, F.J., Castro, E.M., Parentoni, S.N., 2009. Atividade de enzimas do sistema antioxidante e as modificações no desenvolvimento de aerênquimas em raízes de milho sob alagamento. Embrapa Sorgo e Milho, Sete Lagoas.
Malavolta, E., Vitii, G.C., Oliveira, S.A., 1997. Avaliação do estado nutricional de plantas: princípios e aplicações. 2ª.ed. Potafos, Piracicaba.
Marschner, P., 2012. Marschner’s mineral nutrition of higher plants. 3rd.ed. Academic Press, New York.
Martinazzo, E.G., Perboni, A.T., Oliveira, P.V., Bianchi, V.J., Bacarin, M.A., 2013. Atividade fotossintética em plantas de ameixeira submetidas ao déficit hídrico e ao alagamento. Ci Rural. 43, 35-41.
Medri, C., Pimenta, J.A., Ruas, E.A., Souza, L.A., Medri, P.S., Sayhun, S., Medri, M.E., 2012. O alagamento do solo afeta a sobrevivência, o crescimento e o metabolismo de Aegiphila sellowiana Cham.(Lamiaceae)? Ci. Bio. Saúde. 33(1), 123-134. doi: 10.5433/1679-367.2012v33n1p123
Melo, H.C., Castro, E.M., Soares, A.M., Melo, L.A., Alves, J.D., 2007. Alterações anatômicas e fisiológicas em Setaria anceps Stapf ex Massey e Paspalum paniculatum L. sob condições de déficit hídrico. Hoehnea. 34, 145-53.
Muhammad, N., Cai, S., Shah, J.M., Zhang, G., 2016. The combined treatment of Mn and Al alleviates the toxicity of Al or Mn stress alone in barley. Acta Physiologiae Plantarum. 38(12), 277. doi: 10.1007/s11738-016-2296-2
Oliveira, A.K.M., Gualtieri, S.C.J., 2016. Gas exchange in young plants of Tabebuia aurea (Bignoniaceae Juss.) subjected to flooding stress1. Rev. Árvore. 40(1), 39-49. doi: 10.1590/0100-67622016000100005
Paul, M.V., Iyer, S., Amerhauser, C., Lehmann, M., van Dongen, J.T., Geigenberger, P., 2016a. RAP2. 12 oxygen sensing regulates plant metabolism and performance under both normoxia and hypoxia. Plant Physiol. 173(2). doi: 10.1104/pp.16.00460
Paul, M.V., Iyer, S., Amerhauser, C., Lehmann, M., van Dongen, J.T., Geigenberger, P., 2016b. Oxygen Sensing via the Ethylene Response Transcription Factor RAP2. 12 Affects Plant Metabolism and Performance under Both Normoxia and Hypoxia. Plant
Physiology. 172(1), 141-153. doi: 10.1104/pp.16.00460
Phukan, U.J., Mishra, S., Shukla, R.K., 2016. Waterlogging and submergence stress: affects and acclimation. Crit. Rev. Biotechnol. 36(5), 956-966. doi: 10.3109/07388551.2015.1064856
Rocha, M., Licausi, F., Araujo, W.L., Nunes-Nesi, A., Sodek, L., Fernie, A.R., Van Dongen, J.T., 2010. Glycolysis and the tricarboxylic acid cycle are linked by alanine aminotransferase during hypoxia induced by waterlogging of Lotus japonicas. Plant Physiol. 152, 1501-13. doi: 10.1104/pp.109.150045
Santos, E.F., Santini, J.M.K., Paixão, A.P., Júnior, E.F., Lavres, J., Campos, M., Reis, A.R., 2017. Physiological highlights of manganese toxicity symptoms in soybean plants: Mn toxicity responses. Plant Physiol. Biochem. 113:6-19. doi: 10.1016/j.plaphy.2017.01.022
Sena, G.A.R., Kozlowski, T.T., 1980. Effects of flooding on Eucalyptus camaldulensis and Eucalyptus globulus seedlings. Oecologia. 46, 139-42.
Silva, I.R., Novais, R.F., Jham, G.N., Barros, N.F., Gebrim, F.O., Nunes, F.N., Neves, J.C.L., Leite, F.P., 2004. Responses of eucalypt species to aluminum: the possible involvement of low molecular weight organic acids in the Al tolerance mechanism. Tree Physiol. 24, 1267-77. doi:10.1093/treephys/24.11.1267
Silveira, H.R.D.O., Souza, K.R.D.D., Alves, J.D., Santos, M.D.O., Andrade, C.A., Bomfim, S.C., 2015. Gas exchange and carbohydrate partitioning in coffee seedlings under waterlogging. Ci. Agrotec. 39(2), 138-146. doi: 10.1590/S1413-70542015000200005
Smith, R., Renton, M., Reid, N., 2017. Growth and carbon sequestration by remnant Eucalyptus camaldulensis woodlands in semi-arid Australia during La Niña conditions. Agr. Forest Meteorol. 232, 704-710. doi: 0.1016/j.agrformet.2016.10.014
Taiz, L., Zeiger, E., 2009. Fisiologia vegetal. 4a.edArtmed, Porto Alegre.
Takahashi, H., Yamauchi, T., Colmer, T.D., Nakazono, M., 2014. Aerenchyma formation in plants. Low-Oxygen St. Plants. 247-265. doi: 10.1007/978-3-7091-1254-0_13
Van Der Moezel, P.G., Watson, L.E., Bell, D.T., 1989. Gas exchange responses of two eucalyptus species to salinity and waterlogging. Tree Physiol. 5, 251-7.
Visser, E.J.W., Voesenek, L.A.C.J., 2004. Acclimation to soil flooding – sensing and signal-tranduction. Plant Soil. 254, 197-214. doi: 10.1007/s11104-004-1650-0
Voesenek, L.A., Sasidharan, R., Visser, E.J., Bailey‐Serres, J., 2016. Flooding stress signaling through perturbations in oxygen, ethylene, nitric oxide and light. New Phytologist. 209(1), 39-43. doi: 10.1111/nph.13775
Xue, S., Zhu, F., Wu, C., Lei, J., Hartley, W., Pan, W., 2016. Effects of manganese on the microstructures of Chenopodium ambrosioides L., a manganese tolerant plant. Int. J. Phyto. 18(7), 710-719. doi: 10.1080/15226514.2015.1131233
Zanão Júnior, L.A., Fontes, R.L.F., Neves, J.C.L., Korndörfer, G.H., Ávila, V.T., 2010. Rice grown in nutrient solution with doses of manganese and silicon. R Bras Ci Solo. 34, 1629-39. doi: 10.1590/S0100-06832010000500016
DOI: https://doi.org/10.18686/ss.v1i1.1126
Refbacks
- There are currently no refbacks.