A Review of Application and Development of Omics Technology in Environmental Field

Hao Wang, Jingfeng Ding, Zhengtao Xi, Wei He

Abstract


The development of omics technology will accelerate the application of bioremediation technology in the environmental field, showing great potential. This article reviews the application of bionomics technology in environmental fields such as heavy metal pollution remediation, soil salinization, oil pollution remediation and plant growth promotion and discusses the role played by omics technology in helping people understand the pathways and mechanisms of microorganisms in the process of removing pollutants from the molecular level.

Keywords


Omics Technology; Microorganism; Bioremediation

Full Text:

PDF

References


Plewniak, F., Crognale, S., Rossetti, S., & Bertin, P. N. (2018). A Genomic Outlook on Bioremediation: The Case of Arsenic Removal. Frontiers in Microbiology.

Chakraborty, R., Wu, C. H., & Hazen, T. C. (2012). Systems biology approach to bioremediation. Current Opinion in Biotechnology, 23(3), 483-490.

Liu, L., Bilal, M., Duan, X., & Iqbal, H. (2019). Mitigation of environmental pollution by genetically engineered bacteria - Current challenges and future perspectives. The Science of the total environment, 667, 444–454.

Lovley, D. R. (2003). Cleaning up with genomics: applying molecular biology to bioremediation. Nature Reviews Microbiology, 1(1), 35-44.

J.M. Jacob, C. Karthik, R.G. Saratale, S.S. Kumar, D. Prabakar, K. Kadirvelu, A. Pugazhendhi. Biological approaches to tackle heavy metal pollution: a survey of literature. J. Environ. Manag., 217 (2018), pp. 56-70.

Wang, X., Li, D., Gao, P., Gu, W., He, X., Yang, W., & Tang, W. (2020). Analysis of biosorption and biotransformation mechanism of Pseudomonas chengduensis strain MBR under Cd(II) stress from genomic perspective. Ecotoxicology and environmental safety, 198, 110655. Advance online publication. https://doi.org/10.1016/j.ecoenv.2020.110655.

Xia, X., Li, J., Liao, S., Zhou, G., Wang, H., Li, L., Xu, B., & Wang, G. (2016). Draft genomic sequence of a chromate- and sulfate-reducing Alishewanella strain with the ability to bioremediate Cr and Cd contamination. Standards in Genomic Sciences, 11(1).

Cai, L., Zheng, S. W., Shen, Y. J., Zheng, G. D., Liu, H. T., & Wu, Z. Y. (2018). Complete genome sequence provides insights into the biodrying-related microbial function of Bacillus thermoamylovorans isolated from sewage sludge biodrying material. Bioresource technology, 260, 141–149. https:// doi.org/ 10.1016/j.biortech.2018.03.121.

Guo, H., Luo, S., Chen, L., Xiao, X., Xi, Q., Wei, W., Zeng, G., Liu, C., Wan, Y., Chen, J., & He, Y. (2010). Bioremediation of heavy metals by growing hyperaccumulaor endophytic bacterium Bacillus sp. L14. Bioresource technology, 101(22), 8599–8605. https://doi.org/10.1016/j.biortech.2010.06.085.

Ouertani, R., Ouertani, A., Mahjoubi, M., Bousselmi, Y., Najjari, A., Cherif, H., Chamkhi, A., Mosbah, A., Khdhira, H., Sghaier, H., Chouchane, H., Cherif, A., & Neifar,M.(2020).New Plant Growth-Promoting, Chromium-Detoxifying Microbacterium Species Isolated From a Tannery Wastewater: Performance and Genomic Insights. Frontiers in bioengineering and biotechnology, 8, 521. https: //doi.or g/10.33 89/fbio e.2020. 00521 Jacob et al., 2018.

Chai L., Ding C., Li J., Yang Z., Shi Y. (2019). Multi-omics response of Pannonibacter phragmitetus BB to hexavalent chromium. Environ. Pollut. 249, 63–73. 10.1016/j.envpol. 2019. 03.005.

Ahemad M., Kibret M. (2014). Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J. King. Saud. Univ. Sci. 26, 1–20. 10.1016/j.jksus.2013.05.001.

Ramírez-Díaz, M. I., Díaz-Pérez, C., Vargas, E., Riveros-Rosas, H., Campos-García, J., & Cervantes, C. (2008). Mechanisms of bacterial resistance to chromium compounds. Biometals : an international journal on the role of metal ions in biology, biochemistry, and medicine, 21(3), 321–332.

Wang, B., Zhang, D., Chu, S., Zhi, Y., Liu, X., & Zhou, P. (2020). Genomic Analysis of Bacillus megaterium NCT-2 Reveals Its Genetic Basis for the Bioremediation of Secondary Salinization Soil. International Journal of Genomics, 1–11. https://doi-org. ezproxy.newcastle.edu.au/10.1155/2020/4109186.

Zhu C., Mahlich Y., Miller M., Bromberg Y. fusionDB: assessing microbial diversity and environmental preferences via functional similarity networks. Nucleic Acids Research. 2018; 46(D1): D535-D541, 10.1093/nar/gkx1060, 2-s2.0-85040865694, 29112720.

Ho, M. T., Li, M. S. M., McDowell, T., MacDonald, J., & Yuan, Z.-C. (2020). Characterization and genomic analysis of a diesel-degrading bacterium, Acinetobacter calcoaceticus CA16, isolated from Canadian soil. BMC Biotechnology, 20(1), 1–15.

Laczi K, Kis A, Horvath B, Maroti G, Hegedus B, Perei K, Rakhely G. Metabolic responses of Rhodococcus erythropolis PR4 grown on diesel oil and various hydrocarbons. Appl Microbiol Biotechnol. 2015; 22: 9745-9759.

Kubota K, Koma D, Matsumiya Y, Chung SY, Kubo M. Phylogenetic analysis of long-chain hydrocarbon-degrading bacteria and evaluation of their hydrocarbon-degradation by the 2,6-DCPIP assay. Biodegradation. 2008; 5: 749-757.




DOI: https://doi.org/10.18686/pes.v3i3.1403

Refbacks

  • There are currently no refbacks.