Zootechnical effects of different levels of prebiotics and probiotics in diet of Nile tilapia fingerlings

Rayane Seibt Moraes, Matheus Antonio do Amaral, Jaqueline Murbach Braz, Guilherme Silveira Telli, Danúsia Tavares Albuquerque, Renan Rodrigues Campos, Daniel Ferreira Rodrigues de Oliveira, Antonio Cesar Godoy, Claucia Aparecida Honorato, Dacley Hertes Neu

Abstract


This study evaluated the effects of symbiotic inclusion on the zootechnical performance of Nile tilapia. For this purpose, fry with an initial weight of 2.48 ± 0.53 g were used and fed until the juvenile stage (16.31 ± 1.7 g). The experiment, conducted over 53 days at UFGD—Federal University of Greater Dourados, followed a completely randomized design with five treatments and four replicates. The diets contained different levels of symbiotics (1.5%, 3.0%, 4.5%, and 6.0%), in addition to a control group without additives. After the final biometric measurements, the liver, intestine, and visceral fat of three fish were analyzed to determine the visceral fat index, intestinal quotient, and hepatosomatic index. Additionally, performance parameters such as final weight, weight gain, feed conversion ratio, batch uniformity, and survival were evaluated. Data were subjected to analysis of variance (ANOVA) after tests for homogeneity and normality. No significant differences in zootechnical performance were observed between treatments. Thus, under the conditions of this study, the inclusion of symbiotics did not show benefits compared to the control group and is not recommended for improving the performance of Nile tilapia fry.


Keywords


additive; aquaculture; nutrition; prebiotic; probiotic

Full Text:

PDF

References


Food and Agriculture Organization of the United Nations. The state of World Fishieris and Aquaculture (SOFIA). FAO; 2022.

Brazilian fish farming association peixe br. Anuário 2023 Peixe BR da pisciculture (Portuguese). São Paulo, SP; 2023. p. 138.

Schwarz KK, Ramos AC, Schlottag BB, et al. Probiotics, prebiotics and symbiotics in the nutrition of Nile tilapia fry Oreochromis niloticus (Portuguese). Archives of Veterinary Science 2016; 21(2): 43-51.

Pavanelli GC, Takemoto, Ricardo M. Parasitology of freshwater fish in Brazil (Portuguese). Maringá, Eduem; 2013. pp. 353‐370.

Mourino JLP, Gabriel Fernandes Alves Jesus, Scheila Anelise Pereira, et al. Probiotics in Aquaculture (Portuguese). In: Patologia e sanidade de organismos aquáticos. Maringá-PR; 2008. p. 404.

Marques A, Dinh T, Ioakeimidis C, et al. Effects of Bacteria on Artemia franciscana Cultured in Different Gnotobiotic Environments. Applied and Environmental Microbiology. 2005; 71(8): 4307-4317. doi: 10.1128/aem.71.8.4307-4317.2005

Kiron V. Fish immune system and its nutritional modulation for preventive health care. Animal Feed Science and Technology. 2012; 173(1-2): 111-133. doi: 10.1016/j.anifeedsci.2011.12.015

Reda RM, Ibrahim RE, Ahmed ENG, et al. Effect of oxytetracycline and florfenicol as growth promoters on the health status of cultured Oreochromis niloticus. Egyptian Journal of Aquatic Research. 2013; 39(4): 241-248. doi: 10.1016/j.ejar.2013.12.001

Albuquerque DM, Marengoni NG, Boscolo WR, et al. Probiotics in diets for Nile tilapia during sex reversal (Portuguese). Ciência Rural. 2013; 43(8): 1503-1508. doi: 10.1590/s0103-84782013000800026

Gibson GR, Roberfroid MB. Dietary Modulation of the Human Colonic Microbiota: Introducing the Concept of Prebiotics. The Journal of Nutrition. 1995; 125(6): 1401-1412. doi: 10.1093/jn/125.6.1401

Collins MD, Gibson GR. Probiotics, prebiotics, and synbiotics: approaches for modulating the microbial ecology of the gut. The American Journal of Clinical Nutrition. 1999; 69(5): 1052S-1057S. doi: 10.1093/ajcn/69.5.1052s

Rohani MF, Islam SM, Hossain MK, et al. Probiotics, prebiotics and synbiotics improved the functionality of aquafeed: Upgrading growth, reproduction, immunity and disease resistance in fish. Fish & Shellfish Immunology. 2022; 120: 569-589. doi: 10.1016/j.fsi.2021.12.037

Das S, Mondal K, Haque S. A review on application of probiotic, prebiotic and synbiotic for sustainable development of aquaculture. Growth. 2017; 14: 15.

Jahari MA, Mustafa S, Roslan MAH, et al. The Effects of Synbiotics and Probiotics Supplementation on Growth Performance of Red Hybrid Tilapia, Oreochromis mossambicus x Oreochromis niloticus. Journal of Biochemistry, Microbiology and Biotechnology. 2018; 6(1): 5-9. doi: 10.54987/jobimb.v6i1.383

Ghasempour Dehaghani P, Javaheri Baboli M, Taghavi Moghadam A, et al. Effect of synbiotic dietary supplementation on survival, growth performance, and digestive enzyme activities of common carp (Cyprinus carpio) fingerlings. Czech Journal of Animal Science. 2015; 60(5): 224-232. doi: 10.17221/8172-cjas

Kumar P, Jain KK, Sardar P, et al. Effect of dietary synbiotic on growth performance, body composition, digestive enzyme activity and gut microbiota inCirrhinus mrigala (Ham.) fingerlings. Aquaculture Nutrition. 2017; 24(3): 921-929. doi: 10.1111/anu.12628

Bartlett MS. Properties of sufficiency and statistical tests. In: Breakthroughs in Statistics. Springer New York; 1992. pp. 113–126.

Shapiro SS, Wilk MB. An Analysis of Variance Test for Normality (Complete Samples). Biometrika. 1965; 52(3/4): 591. doi: 10.2307/2333709

Tukey JW. Comparing Individual Means in the Analysis of Variance. Biometrics. 1949; 5(2): 99. doi: 10.2307/3001913

Ferreira EB, Cavalcanti PP, Nogueira DA. ExpDes.pt: Pacote Experimental Designs (Portugues). Available online: https://CRAN.Rproject.org/package=ExpDes.ptrpackageversion1.2.2 (accessed on 10 October 2024).

RCore Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing Vienna, Austria. Available online: https://www.R-project.org/ (accessed on 10 October 2024).

Wei T, Simko V. R package ‘corrplot’: Visualization of a Correlation Matrix. Available online: https://github.com/taiyun/corrplot (accessed on 10 October 2024).

Sokal RR, Rohlf FJ. Biometry. New York: W.H. Freeman; 1981. p. 859.

Sankar H, Philip B, Philip R, et al. Effect of probiotics on digestive enzyme activities and growth of cichlids,Etroplus suratensis (Pearl spot) andOreochromis mossambicus (Tilapia). Aquaculture Nutrition. 2016; 23(4): 852-864. doi: 10.1111/anu.12452

Meurer F, Hayashi C, Costa MM da, et al. Saccharomyces cerevisiae as a probiotic for nile tilapia fry subjected to a health challenge (Portuguese). Revista Brasileira de Zootecnia. 2007; 36(5): 1219-1224. doi: 10.1590/s1516-35982007000600001

Tachibana L, Dias DC, Ishikawa CM, et al. Probiotic feed for Nile tilapia (Oreochromis niloticus Linnaeus, 1758) during sex reversal: zootechnical performance and recovery of intestinal probiotic bacteria (Portuguese). Bioikos—Título não-corrente. 2011; 25: 1.

Günther J, Jiménez-Montealegre R. Effect of the probiotic Bacillus subtilis on the growth and food utilization of tilapia (Oreochromis niloticus) and prawn (Macrobrachium rosenbergii) under laboratory conditions. Revista de biologia tropical. 2004; 52: 937-943.

Shelby RA, Lim C, Aksoy MY, Delaney M. Effects of probiotic diet supplements on disease resistance and immune response of young Nile tilapia, Oreochromis niloticus. Journal of Applied Aquaculture. 2006; 18(2): 23-34.

Lima ACF, Pizauro Júnior JM, Macari M, et al. Efeito do uso de probiótico sobre o desempenho e atividade de enzimas digestivas de frangos de corte. Revista Brasileira de Zootecnia. 2003; 32(1): 200-207. doi: 10.1590/s1516-35982003000100025

Zhou X, Tian Z, Wang Y, et al. Effect of treatment with probiotics as water additives on tilapia (Oreochromis niloticus) growth performance and immune response. Fish Physiology and Biochemistry. 2010; 36(3): 501-509. doi: 10.1007/s10695-009-9320-z

David JWM. Probiotics in aquaculture. Microbiology Australia. 2003; 24: 15-17. doi: 10.1071/MA03115

Daniels CL, Merrifield DL, Boothroyd DP, et al. Effect of dietary Bacillus spp. and mannan oligosaccharides (MOS) on European lobster (Homarus gammarus L.) larvae growth performance, gut morphology and gut microbiota. Aquaculture. 2010; 304(1-4): 49-57. doi: 10.1016/j.aquaculture.2010.03.018

Azevedo RV, Fosse Filho JC, Cardoso LD, et al. Economic evaluation of prebiotics, probiotics and symbiotics in juvenile Nile tilapia. Revista Ciência Agronômica. 2015; 46(1): 72-79. doi: 10.1590/s1806-66902015000100009

Brandão FR, Gomes L de C, Chagas EC, et al. Stocking density of juvenile tambaqui during rearing in net pens (Portuguese). Pesquisa Agropecuária Brasileira. 2004; 39(4): 357-362. doi: 10.1590/s0100-204x2004000400009

Barton BA, Iwama GK. Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. Annual Review of fish diseases, 1991; 1: 3-26. https://doi.org/10.1016/0959-8030(91)90019-G

Abarike ED, Cai J, Lu Y, et al. Effects of a commercial probiotic BS containing Bacillus subtilis and Bacillus licheniformis on growth, immune response and disease resistance in Nile tilapia, Oreochromis niloticus. Fish & Shellfish Immunology. 2018; 82: 229-238. doi: 10.1016/j.fsi.2018.08.037

Kuebutornye FKA, Abarike ED, Sakyi ME, et al. Modulation of nutrient utilization, growth, and immunity of Nile tilapia, Oreochromis niloticus: the role of probiotics. Aquaculture International. 2019; 28(1): 277-291. doi: 10.1007/s10499-019-00463-6

Schwarz KK, Furuya WM, Natali MRM, et al. Mannan oligosaccharide in diets for juvenile Nile tilapia (Portuguese). Acta Scientiarum Animal Sciences. 2010; 32(2). doi: 10.4025/actascianimsci.v32i2.7724

Cerezuela R, Fumanal M, Tapia-Paniagua ST, et al. Changes in intestinal morphology and microbiota caused by dietary administration of inulin and Bacillus subtilis in gilthead sea bream (Sparus aurata L.) specimens. Fish & Shellfish Immunology. 2013; 34(5): 1063-1070. doi: 10.1016/j.fsi.2013.01.015

Huynh TG, Shiu YL, Nguyen TP, et al. Current applications, selection, and possible mechanisms of actions of synbiotics in improving the growth and health status in aquaculture: A review. Fish & Shellfish Immunology. 2017; 64: 367-382. doi: 10.1016/j.fsi.2017.03.035

Ghaly FM, Hussein SHM, Awad SM, et al. Growth promoter, immune response, and histopathological change of prebiotic, probiotic and synbiotic bacteria on Nile tilapia. Saudi Journal of Biological Sciences. 2023; 30(2): 103539. doi: 10.1016/j.sjbs.2022.103539

Wibisono CB, Wahyudi AI, Arief M, et al. The potency of synbiotics in improving the growth rate, feed conversion ratio, protein retention and lipid retention in Nile tilapia (Oreochromis niloticus). Aquaculture, Aquarium, Conservation & Legislation. 2021; 14(1): 486-494.

Martens JH, Barg H, Warren MJ, et al. Microbial production of vitamin B12. Appl Microbiol Biotechnol. 2002; 58(3): 275-85. doi: 10.1007/s00253-001-0902-7

Azokpota P, Hounhouigan DJ, Nago MC, et al. Esterase and protease activities of Bacillus spp. from afitin, iru and sonru; three African locust bean (Parkia biglobosa) condiments from Benin. African journal of Biotechnology. 2006; 5(3): 265-272. DOI: 10.5897/AJB05.304

Lara-Flores M, Olvera-Novoa MA, Guzmán-Méndez BE, et al. Use of the bacteria Streptococcus faecium and Lactobacillus acidophilus, and the yeast Saccharomyces cerevisiae as growth promoters in Nile tilapia (Oreochromis niloticus). Aquaculture. 2003; 216(1-4): 193-201. doi: 10.1016/S0044-8486(02)00277-6

Braz JM, Marcondes AS, Amaral MA, et al. Enhancing Juvenile Nile Tilapia Growth and Health through Prebiotic and Probiotic Supplementation: A Comprehensive Study. Journal of Experimental Agriculture International. 2024; 46(8): 1074-1089. doi: 10.9734/jeai/2024/v46i82795




DOI: https://doi.org/10.18686/fsa2278

Refbacks

  • There are currently no refbacks.