
Probe-Computer Science & Information Technology Volume 1 Issue 1 | 2019 | 1

ORIGINALARTICLE

Based on Spark SQL Design and Implementation of distributed full-
text retrieval framework based on
Jiaxin Lan

HarbinArchitecture University, Shijiazhuang, Hebei Province, 050000

Abstract: With the deepening of Information Technology,Big Data has created great value in various fields.,Storage and
fast analysis of massive data has become a new challenge..Traditional relational database due to
Performance,Disadvantages of scalability and high price,Difficult to meet the storage and analysis needs of big data.Spark
SQLIs based on the Big Data Processing FrameworkSparkData analysis tools,Currently supportedTPC-
DSBenchmark,Become an alternative solution to traditional data warehouse under the background of big data.Full-text
retrieval as an effective way of text search,Can be used in conjunction with general query operations,Provide
richer query andAnalysis
Keywords: Operation.; SparkSQL; Simple query operation; Full-text retrieval; traditional business migration;

1. Introduction
In a relational database,Full-text retrieval is an

important index to measure the usability and
functional completeness of Database.Full-text
retrieval matches keyword and stored document
data,Information Retrieval Technology for several
documents with high correlation degree.In many
relational databases,SuchMySQL, SQL Server,All have
full-text retrieval capabilities.

However,SparkSQLAs an alternative system to
traditional data warehouse,Full-text retrieval is not
supportedSQLStatement and Its parallelization.Existing distributed full-text retrieval engine(SuchSOLRAndElasticsearch)Although providedHiveAndSparkConnector,However, full-text retrieval is still not supportedSQLGrammar,Cannot meet the need for edge query while computing,Deployment complexity and learning costs make it hard to use.

To meet the requirements of traditional business
migration and existing business for retrieval,This paper
designs and realizesSparkSQLDistributed full-text
retrieval framework.The main contributions of this paper
are as follows:

1)Process translation from query language to
retrieval model,Including full-text searchSQLGrammar

andSQLStatement Translation Method for executing
engine parallel Tasks.

2)A parallel method for full-text retrieval tasks is
proposed.,Including index build and query Parallelism.

3)Two retrieval optimization schemes are
proposed..Two different schemes focused on
performance optimization and storage
optimization.,Each scheme includes index storage and
restore of original table data..Optimized scenario for
storage,Proposed time complexityO (N)Connection
Algorithm Between query results and original table data.

Performance of frames using large data
sets,Scalability is evaluated,Compared with the
traditional relational database..Experiments show
that,Compared to traditional relational database,Under
two retrieval Optimization Strategies,Build time of the
Framework Index,Query time is the same as the
traditional database.0.5%/1%, 10%/0.6%,Index storage
is reduced55.0%.

Copyright © 2019 .
This is an open-access article distributed under the terms of the Creative CommonsAttribution Unported License
(http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

http://creativecommons.org/licenses/by-nc/4.0/)

2 | USP et al. Probe-Computer Science & Information Technology

This article2.Section describes the Big Data
Query Language and framework, SQLExecution Plan
build and optimizer,Parallel work of full-text
retrieval;No3.Section describes full-text
retrieval,SparkAndSparkImplementation plan generation
and optimizer related concepts and
principles;No4.Section describes the overall design of
the Distributed Retrieval framework.,Summarize the
functions and functions of each layer;No5.Section
describes the frameworkSQLGrammar,Design and
Implementation of retrieval parallelization and retrieval
Optimization;No6.Section describes the framework
applicationSparksqlSituation andSparksqlOverview of
kernel modifications;No7.The performance and
scalability of the framework are;Final Summary full
text,And point out the next research work.

2. Related work
Research work related to the framework can be

divided into relational interfaces for Big Data
Processing Systems, SQLExecution Plan build and
optimizer,Parallel Full-text retrieval3.Aspects.

1)Big Data Query Language and framework
Based onMapreduceThe big data processing system

can give users powerful but low-level,Procedural
Programming Interface.Programming Based on such
systems is tedious, For efficient performance,User
needs Self-Tuning.Therefore,Numerous Systems(Not
limitedMapreduceProgramming Mode)SuchPig ,[12] Hive,IMPA-

la[10],Dremel[11],Blinkdb AndSparkProvides Query Language
Interface and Automatic Optimization Technology,No

need to write low-level code and focus on low-level
execution engine details,Enhanced User Experience.

2) SQLExecution Plan build and optimizer
SQLExecution Plan build and optimizer

willSQLThe underlying execution engine can
recognize the physical execution
plan..Hive,DremelAndSparksqlAll have Optimizer.
HiveViaAntlr[13]Tool RecognitionSQLStatement,And
convert it to the underlyingMapreduceTask.SparkIs
throughCatalyst[8]Engine parse.This kind of optimizer is
doneSQLParse idiom tree,Turn it into an underlying
execution task based on a series of analysis and
optimization policies.Process is usually
divided:Abstract syntax tree based on lexical and
Syntax Parsing;Specification check;Get plan tree for
metadata binding with data dictionary;Plan tree

Optimization;Optimal Plan Selection;Physical execution.
3)Parallel Full-text retrieval
Full-text retrieval involves the establishment of

index and quick query with index..The parallelization
of full-text retrieval is the parallelization of these
two processes in distributed environment.,Full-text
search engineSolrcloudAndElasticsearchThe index is
distributed to different machines through the
fragmentation mechanism.,When a search request
comes, it is distributed to the machine where the index
slice is located and executed in parallel.,And returns
the query result.Among them,Index operations on each
machine are handledLuceneDone, The parallel
process of multi-machine retrieval is communicated and
scheduled by the system..

Currently,ForSparkThe full-text retrieval tool for
scenarioSpark-lu-Cenerdd[14],ButSpark-lucinerddIndex created
can only be used in one job,Failed to reuse history
index in multiple jobs,And no storage optimization for
the index,Not availableSQLFull-text search,Its group-
orientedSparkFamiliar developer.

3. Related Concepts and Principles
3.1 Full-text retrieval

Full-text retrieval refers to the computer's Index
program that scans documents,Index every
word,Record the location and number of
occurrences of the word,When a user queries,Search
program based on the index built in advance to
find,And feedback the query results to the user's
retrieval method..

The full-text retrieval system is a software system
that provides full-text retrieval services according to the
full-text retrieval theory..The structure of the full-text
Retrieval System1.Shown,Generally speaking,The full-
text retrieval system needs the basic functions of
indexing and querying.,And Text Analysis,External
interface module.

1) RDDThe Concept
RDDIs a fault tolerant,Parallel Data

Structure,Allows users to explicitly store data to disk
and memory,And can control the partition of the
data;Simultaneous, RDDAlso provides a rich set of
interfaces to manipulate this data.
RDDInterdependence to form Directed Acyclic
Graphs(DAG),SparkThrough analysisDagDivide Task

Probe-Computer Science & Information Technology Volume 1 Issue 1 | 2019 | 3

Scheduling and execution,And
provideCacheMechanism to support data sharing during
multiple iterations,Greatly reduces the overhead of
repeatedly reading data between iterative
calculations,This is of great help to the performance
of data mining and analysis applications that require
multiple iterations..

2)Data Dependency and Performance
RDDAs data structure,Is essentially a read-only

collection of partition records.OneRDDCan contain
multiple partitions,Each partition is part of the data set.
RDDCan be interdependent to form Directed Acyclic
Graphs.

IfRDDCan only be one child per
partitionRDDThe use of a partition,It's called Narrow
dependence.;If moreRDDPartitions can be dependent
on,It's called wide dependence..Different operations
may generate different dependencies depending on
their characteristics.

Distinguish wide and narrow dependence
onSparkJob Scheduling and performance analysis are
important.Narrow dependency means it can be done
on the same machinePipelineOperation,Equals to
superimposing the operator of the data
operation,Avoiding more multitasking;And wide
dependence is usually accompanied by
dataShuffleOperation,Prone to performance
issues,Therefore, good algorithm and frame design
should avoid wide dependence..

3.2 sparksqlTranslation Engine

The Translation Engine isSQLAn important step
in converting tasks that the underlying distributed
computing engine can recognize.

InSparksqlChina,Okay.SQLThe parsing process is
throughCatalystConducted,CatalystIt's
universal.SQLTranslation Engine,Responsible for
planning and optimization,The parse process is:

1)UseAntlrGrammarParsing.
2.)ParserViaVisitorPattern willAntlrThe formed

syntax tree is replacedCatalystA plan tree consisting of
Tree nodes defined in.

3.)AnalyzerAssociating a plan tree with metadata
information;OptimizerOptimize the plan tree,Such as
constant folding,PredicatePushdown.

4)Physical Plan Converter(SparkPlanner)Is to
convert each node of the plan tree to the

underlyingSparkPerform engine-matched physical
plan,Each physical plan contains a pairRDDOr the
operation of the Data Source. RDDYesSparkLast step
before Task Assignment and Scheduling,It represents
the underlying data and the encapsulation of the Data
Operator.

4. Frame Design
This article framework contains

4.1 Layer

Receiving user query statementsSQLClient layer;
SQLTranslation Engine,Responsible for analyzing
and optimizing the execution plan;Parallel
Computing Layer,To provide distributed full-text
retrieval;Distributed index storage layer,Negative

SQLThe client can receive user
inputSQLStatement,The query submission module
willSQLSubmit to Translation Engine,Results
resolution module parses the query results and
returns them to the
client,AdoptedSparksqlOfCLIImplementation.

4.2 Translation Engine

SQLThe translation engine module isSQLModule
that performs the plan tree and optimizes.Parse process
similar to Compiler Principle,First of all,According to
lexical and grammatical rulesSQLStatement
Segmentation,To form a grammar tree..The syntax tree
contains a series of semantic actions on the table from
the bottom up.After,Based on a series of replacement
and optimization rules,Change the syntax tree
structure,ViaCostmodelSelect the optimal physical
execution plan tree for the execution engine and
hand it over to the underlying execution
engine,Execute result returnSQLClient.

InSparkChina,CatalystAs the execution plan build and
Optimization Framework willSQLStatement resolution
for multipleRDDOperation, RDDFormedDagTo the
parallel computing engine for job planning and
execution. SQLInterpreter adoptionCatalyst,Through
modificationCatalyst,Recognition full-text retrieval
Grammar,And maps full-text retrieval operations to
include full-text retrieval
capabilitiesSearchrddOperation,And hand it to the
parallel computing Engine.

4.3 Parallel Computing Layer

4 | USP et al. Probe-Computer Science & Information Technology

Lexical,Syntax analysis,Indexing and other
operations;The data source docking module writes the
index of each partition data in the table to the
distributed storage layer in parallel.;The parallelization
of the query is based on the index parallel query of
each partition.,Finally through the GlobalRe-
duceOperation returns highest scoreKResults.

4.4 Distributed index storage layer

Distributed index storage layer adoptsHDFSAs a
storage file system,The storage of the index is
fragmented and replica,Thus, the concurrency and
efficiency of job execution in parallel computing layer
are improved..In this paper, two retrieval
optimization schemes are designed and
implemented.,That is to say, the index storage and the
original table data reduction strategy focusing on
performance optimization and storage optimization are
two scenarios.,Total storage and index specified
column policies;Also for storage optimization
scenarios,Proposed time complexityO (N)Connection
Algorithm Between query results and original table
data.Full storage for scenarios where query results are
obtained in the shortest amount of time,But the
index storage is larger;The index-specified column
works for scenarios with limited storage space,Index
storage in the table has hundreds,Thousands of column
when the advantage very obviousAndHigh
Performance of data connection algorithm can
assurance in can accept of time in return query results.

5. Each layer design
In big data processing and analysis system inSQLIs

user the operation of direct interfaceSQLGet a
recognition user submittedSQLQuery statementBy
internal definition of conversion and optimization
rulesPhysical Implementation Plan.Physical
implementation plan contains the how to
implementation planning underlying job of
details?Including operation of definition and your files
system of interaction.

The conversion rulesSupport will query operation.
Pushed to Data Source;In physical plan implementation
moduleImplementation.SearchrddClassContains index
established and index query function.WhichGrammar
design reference.MySQLIn the full text retrieval
GrammarMySQLYes3Of Style established IndexHere

only reference a kindThis a kind of style compared
with other two more in line with the user used.

5.1 Solution

This paper in grammar analysis module
onIncrease the full text retrieval grammar and the
full text retrieval grammar recognition rules;In
physical plan module onIncrease the full text retrieval
Grammar

The full text retrieval grammar of translation
process as shown in Figure3Shown inSQLStatement
by conversion for grammar tree final transformation
for physical implementation planPhysical
implementation plan containsRDDOf Operation.

Column InformationBut because no storage
corresponding of bIn stand-alone data less of
situation underStorage strategy only need additional
storage user need of Domain(Column)InformationAnd
not in storage and performance bottleneck problem.With
the data of riseSituation will produce very big of
difference.In massive dataSQLRetrieval.Table usually
contains do line or thousands of column of dataThis
produce the huge of additional storage
overhead(InSparkAndSOLROrESThe combined with "with
inAlso there are the problem).This a kind of difficult to
"with simple of storage strategy.

Lack of Domain(Column)Data can by get the
original table corresponding location of data to
fillThe query results by and the original table data
associated find the missing data.Because associated
operation of thereWill produce corresponding of
performance cost.Don't storage any column of dataAnd
only IndexSQLIn specified the need to index of
ColumnAnd by associated operation get the Miss of
dataThis a kind of methods can effective reduce
additional data of StorageBut associated operation will
reduce query performance.

5.2 Solution

Above the massive data retrieval in met of two
class problemThe storage and performance of
comprehensive consideration.Based on this two class
problemThis paper put forward the two kind of storage
strategy:Full amount of the storage strategy and
Index(TokenAndIndex)Specified column strategy.For
different of reality demandThis paper summarized
and total. Two of storage strategy of application
scene,Storage and index rules and the second kind of

Probe-Computer Science & Information Technology Volume 1 Issue 1 | 2019 | 5

strategy in associatedAlgorithm.
1)Applicable scene
The full amount of the index of strategy for an

arcane"WithLuceneSupport random readTherefore
corresponding domain of data can inO (1)Time get.

In only Index(TokenAndIndex)Specified column
of Data Strategy inReturn results only contains score
and documentID,Even though the can by
documentIDAnd the document in the original partition
data in offset consistent of characteristics find original
dataBut most massive storage system for data of access
the iterative the ModeDon't support random readCan't
inO (1)Time in complete.

SoFor performance requirements is high
sceneHope system can quickly return original dataThe
full amount of the Index;For performance requirements
don't high but data abnormal Pang

Partition alignment connection algorithm describe
the has more partition of query results and has more
partition of the original table the connection of Process.

Because for every original table partition
establish the IndexAnd query for an arcane based
on each index generation a query results of
PartitionThe query results of each a partition is for the
original table every a partition of query resultsSo
partition form one by one mapping.Query results and
original table wereRDDSaid.

Algorithm put forward of objective is through
PartitionIDAnd offset(DocumentID)Find this
twoRDDIn every mapping partition in the same of
corresponding pointMakes the table data and query
results data phase panelReturn contains the score and
the original table related column of complete
results.Algorithm complexityO (N),NFor Table data of
total number of rows.

The algorithm of steps are as follows:
Steps1Will query results and original table data of
partition alignment(Based onMap-

Partitionswithindex).

Steps2In query results of partition in"With
dictionary record query results need to get of the
original data of all offset and offset corresponding of
score.

Steps3In the original table of partition in by
iterative and record offset of style find in dictionary in
the offsetFinally with the original data and score panel.

Steps4Traversal all mapping PartitionUntil
connection operation all complete.

6. sparksqlArchitecture and modify
Overview
Among them,The bold part isSparkSQLKernel

modified or added.System architecture
andSparkSQLConsistent Architecture, Sharing4.Layer,
Upper LayerSQLClient accepts user's SQLQuery,
Translate EngineSQLAfter syntax analysis, Metadata
binding, Plan Optimization, Physical Plan
Transformation, Final conversion to pairRDD (Here
isSearchrdd) Operation.Execution engine
executionSearchrddRead-write and query operations
for the partitioned index in,Among them,Index read
and write are based onHDFSIn parallel,Each partition
forms an index.

7. Performance Analysis and
scalability Experiment
This experiment uses10Physical

Machine(1)TaiwanMaster, 9TaiwanSlave),Memory
per physical machine is16
GB,CPUForIntel(R)Core(TM)I7-
2600CPU@3.40GHz8Core,HadoopVersion
is2.7.1,SparkLatest Version for community-
basedMasterBranch and join the branch version of
the full-text retrieval module,Run
inStandaloneMode,Maximum valid ClusterExecutor
Number is36.

Set,This test set contains32440001Article
document. For the experimental environmentSelect the
beforeMIDocument as an experimental dataDue to
operation ability limitedMIThe maximum
value3243904.The number of documents and text form
of space usage such as table5Listed in.

Performance Analysis:Because index of read and
write and query are based on original data(Table)Of
partition parallelThe narrow rely onImplementation
TimeTIndexperformace.Get globalTopKOf results need
to two steps:In each partition in get the original
number accordingWill score number of according to
and the original number according to the spell pick
upOf can

This paper from3A aspects to evaluation different
storage strategy,Piecewise,The number of documents
for system of influenceAnd index establishment
time,The full text retrieval time and index Storage.

6 | USP et al. Probe-Computer Science & Information Technology

7.1 Establish Index

Experimental conclusion are as follows:
Combined with figure8And figure9,Analysis

different document number of implementation time can
foundSparkSQLIn full amount of the storage and index
specified column strategy under established index of
average time respectivelyMySQLImplementation
Time0.6%And0.5%SoMySQLIt is difficult to adapt to the
huge amounts data of the full text retrieval.

Combined with figure10And figure11,The
different document number of implementation time
analysis foundWhen data fixed whenWith the
piecewise Number of increaseDue to more a task to be
performed in parallelAnd the distribution to the
amount of data reduceEstablish index of performance
get improve.When piecewise number of fixed
whenData2The index times riseImplementation time
and the number of documents of slope less1,(Retrieval
of parallel effective relieve the by data

Problem:In piecewise number64An arcaneGreater
than cluster in mostExecutorQuantity35,Parallelism of
which lead to the job need two-round to
implementation completeEven though the each job
distribution to the amount of data lessBut total job
processing time increased(Include job planning,Factors
such as startup).

As the number of documents increases,Although
the number of slices has increased,But total job time
approaches,The reason is that the space footprint of the
Shard is greater than or equalBlocksize,Cause extra job
start.

Index specified column policy only stores part of
data,Saving a lot of disks?IoOperation,Compared to
total storage policies,Average execution time
reduced17%,But there is still a problem with insufficient
Parallelism.

7.2 Full-text retrieval

The experimental conclusion is as follows:
Union chart12Tutu13,Analysis of execution

times for different document numbers can be
found,SparkSQLThe average execution time for full-
text retrieval under full-volume storage and index-
specified column policies isMySQLOf1%And10%.

Union chart14.Tutu15,Perform-time analysis
discovery for different document numbers,When the
amount of data is fixed,As the number of slices

increases,Query time reduced;When the number of
slices is fixed,As the amount of data increases,Query
time grew very slowly,So the framework has good
scalability.

Partition alignment connection algorithm is
required to get the original table data,Therefore, the
index specifies that the column policy takes longer than
the full storage policy..

Index specified column Policy,The decrease of
index storage makes the number of partitions have a
good relationship with the job execution time.,In the
current amount of data,No significant performance
decline..

7.3 Index Storage

Union chart16Tutu17,The index storage under
different document number is analyzed and
found.,Index the index storage for the specified
column policy, yesMySQLOf55.0%,Is full storage
policy36.7%.Because only the necessary
segmentation and index information is stored,Do not
store original document,So as the amount of data and
the number of columns increases,The advantage of
index-specified column policies will be more
pronounced.

7.4 Experiment Summary

Experimental results show that:Under the current
experimental conditions,ContrastMySQL,In total storage
and index-specified column policies,The frame
index build time is reduced to the
original0.6%And0.5%,Query time is reduced to the
original1%And10%,Index storage is reduced to the
original under the index specified column
Policy55.0%,And as the amount of data and the
number of columns increases,Index quantity
andMySQLThe difference between the increase.

In conclusion, the traditional relational database
system is difficult to meet the needs of full-text
retrieval under massive data.,However, the current
mainstream Big Data Processing SystemSparkSimple
data query and Analysis,There is no complete
framework design and implementation for full-text
retrieval..

This systemSQLGrammar Design,Retrieval
Parallelism,Retrieval Optimization3.
IntroducedSparkSQLDesign and Implementation of

Probe-Computer Science & Information Technology Volume 1 Issue 1 | 2019 | 7

distributed full-text retrieval framework.In grammar
Design,Support for indexing on several columns,Also
provides a wealth of retrieval functions,To meet
different retrieval requirements;In terms of index
Parallelism,Will be based on a single process/Thread-
based full-text retrievalSparkMulti-node multi-task
parallel processing,Effective solve the massive data
under traditional database full-text retrieval of
bottleneck problem;In retrieval OptimizationPut
forward the two kind of storage strategy to deal with
different scene. For performance and storage of
requirementsAnd put forwardO (N)Time complexity of
partition alignment connection Algorithm.FinallyBy
contrast different piecewise(Parallelism)And storage
strategy under the index established,The full text
retrieval,StorageProve that the distributed full-text
retrieval framework in performance,Index storage is
far more than traditional relational database.

Next work will enhance the full text retrieval of
FunctionMake its support dimension search and space
searchOptimization Index piecewise strategyAnd will
the contributionSparkCommunity.

References
1. SundwZhanggyZhengwm. big data flow

computation :Key technology and system examples
J. .Journal of soft-ware 201425(4):839-862.(Inchinese)

2. Sun da weiDivergent opinions about YanZheng wei
min.Big Data Flow Cytometry Calculation:Key
technology and system instance

3. White Po MingSun ChengChen
YaoSuch..Channel Coding Technology New
ProgressJ. .Radio Communication
Technology201642(2):1-8.

4. Xu Yihua,Zhou shengkui, Zhu qiuming,Wait..UAV
communication channel Simulation Based on flight
trajectory J. .Telecommunications
Technology,2013,53(5.):656-660

5. JiaoxpWeihyMujj. improvedadmmpenalizedde-
coderforirregularlow-densityparity-checkcodesJ. .
IEEE Communicationsletters201519(6):913-916.

6. AnassioCONDE-CANENCIALMansourmEtal.
Non-binarylow-densityparity-checkcodedcycliccode-
shiftke-YingC. IEEE
wirelesscommunicationsandnetworkingconference.
Shanghai;2013:3890-3894.

7. MAZShiz,Zhouc,Etal. Design of signal space
diversity based on non-binaryldpccodeC. Internet
communications. Fujian,China,2008:31-34.

8. Rongb,Jiangt,Lix,Etal. combineldpccodesovergf()With
ar modulationsforbandwidthefficienttransmisQ-y-
sionJ. . Ieetransactionsonbroadcasting,2008,54(1.):78-
84.

9. Lig,Fairij,Krzymienwa. densityevolutionformonbiJ. .
IEEE

Transactionsoninformationtheory,2009,55(3.):997-
1015.

10. Chenym,Gaoxl,Wangzx,Etal. Performanceanalysis
OfnonbinaryandbinaryldpccodesJ. .
Electronicdesignen-gineering,2013,23.(21.):94-
95.(InChinese)

11. Chenmingyang,Gao Xinglong,Wang
zhongxun,Wait..DiversityLDPCCode and
binaryLDPCCode Performance
AnalysisJ. .Electronic Design Engineering, 2013,23
(21): 94-95.

12. Xuyh,Zhousk,Zhuqm,Etal.
simulationofuavcommunicationchannelbasedonfligh
ttargetJ. . Tele-
communicationengineering,2013,53(5.):656-
660.(InChinese).

13. Salamancal,Olmospm,Murilo-fuentesjj,Etal.
treeexpectationpropagationformldecodingofldpccod
esoverthebecJ. .Ieetransactionsoncommunications,2
013,61(2.):465-473.

14. Songh,Cruzjr. Reduced-complexitydecodingofq-
aryldpccodesformagneticrecordingJ. .

15. Ieetransactionsonmagnetics,2003,39(2.):1081-1087.
16. Wymeerschh,Steendamh,Moeneclaeym. Log-

domaindecofldpccodesovergf()C. 2004 IEEE
Internationalreferenceoncommunications.2004:772-
776.

17. Zhaos,Wangx,Wangt,Etal. ointdetection-decodingof
Majority-
logicdecodablenonbinaryldpccodedmodulationsys-
tems:AniterativenoisereductionalgorithmC.

Ieeechinasummit & international reference on signal
and information processing .3:412-416.

18. Lacruzjo,GARCIA-HERREROF,Vallsj,Etal. One
Minimumonlytrelisdecoderfornon-binarylow-
density-checkcodes J .Ieetransactions on circuits and
systemsi:Re-gularpapers,2015,62(1.):177-184.

19. Pentt,Yixx,Lih,Etal. OFDM-idmasystemwithldpcJ. .
Journalofchongqinginstuteoftechnology,2012,26(11):
80-82.(Inchinses)PengTao,Yixiaoxin,LiHui,Wait..
LDPCCode in Orthogonal Frequency Division
Multiplexing-Application of InterleavingMultiple
Access System J. .Journal of Chongqing University
of Technology, 2012,26 (11): 80-82.

	Based on Spark SQL Design and Implementation of di
	1.Introduction
	2.Related work
	3.Related Concepts and Principles
	3.1Full-text retrieval
	3.2sparksqlTranslation Engine

	4.Frame Design
	4.1Layer
	4.2Translation Engine
	4.3Parallel Computing Layer
	4.4Distributed index storage layer

	5.Each layer design
	5.1Solution
	5.2Solution

	6.sparksqlArchitecture and modify Overview
	7.Performance Analysis and scalability Experiment
	7.1Establish Index
	7.2Full-text retrieval
	7.3Index Storage
	7.4Experiment Summary

	References

